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ABSTRACT

In this paper, we employ a homogenized energy model (HEM) for shape memory alloy (SMA) bending actuators.
Additionally, we utilize a Bayesian method for quantifying parameter uncertainty. The system consists of a SMA
wire attached to a flexible beam. As the actuator is heated, the beam bends, providing endoscopic motion. The
model parameters are fit to experimental data using an ordinary least-squares approach. The uncertainty in
the fit model parameters is then quantified using Markov Chain Monte Carlo (MCMC) methods. The MCMC
algorithm provides bounds on the parameters, which will ultimately be used in robust control algorithms. One
purpose of the paper is to test the feasibility of the Random Walk Metropolis algorithm, the MCMC method
used here.
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1. INTRODUCTION

Shape memory alloys (SMA) are unique actuators that are gaining increased utilization in prototypes such as
robotic catheters,1,2 robotic hands,3 jet chevrons,4,5 and underwater vessels.6 SMA actuators are capable of
recovering large strains (approximately 5%) upon heating. However, the control and optimization of SMA devices
is complicated by the material’s nonlinear, hysteretic dependence on stress and temperature.

In this paper we employ a computationally efficient model for a SMA bending actuator. Furthermore,
we utilize Markov Chain Monte Carlo (MCMC) methods to quantify parameter uncertainty in a systematic
manner. MCMC methods are based on Bayes’ rule, which relates the posterior density of model parameters to
a prior density and the likelihood of those parameters.7,8 MCMC methods avoid the difficulty of calculating the
likelihoods directly (and integrating over the parameter space) by creating a Markov Chain where the stationary
distribution is the posterior distribution. A proposal function and an accept-reject rule determine the random
walk of the Markov Chain.9 The main goal of this paper is to test the feasibility of the approach for the SMA
bending actuator under consideration.

An algorithmic approach to quantifying parametric uncertainty is useful for numerous reasons. The results
can be used to produce bounds on the model output for comparison to experimental data. An additional use for
SMA actuators (in particular the bending actuator under consideration) is to quantify parameter uncertainty for
control algorithms. Robust control methods require some measure of model uncertainty in order to guarantee
stability or optimality. For example, sliding mode control (or variable structure control) requires bounds on
model uncertainty in order to ensure the attractiveness of the sliding surface.10

The remainder of this paper is organized as follows. The model of a flexible beam actuated by a single SMA
tendon is presented first. The homogenized energy model (HEM) is used, which has been applied to various smart
materials.11–20 The approach to quantify uncertainty is described, including optimization of model parameters
and the Markov Chain Monte Carlo method used here. Finally, the results are presented.
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2. HOMOGENIZED ENERGY MODEL OF A SINGLE-TENDON SHAPE MEMORY
ALLOY BENDING ACTUATOR

The system consists of a flexible beam actuated by a single shape memory alloy (SMA) tendon, as depicted in
Figure 1(a). The SMA tendon (actuator) is held a fixed distance from the neutral axis of the flexible beam using
rapid-prototyped collets. The SMA actuator is pre-strained before it is attached to the axially stiff, laterally
compliant beam. Therefore, a moment is created as the SMA tendon contracts due to Joule heating and the
structure bends in the manner shown in Figure 1(b). Similar robotic systems include catheters and smart
inhalers.21,22 A mesoscopic free energy model of a catheter was introduced in Veeramani et al.,1 with further
work in Crews et al.2,23

2.1 System Model

As shown in,2,23 the bending angle θ(t) can be related to the SMA tendon stress σ(t) by the relation

θ(t) =
aAcLσ(t)

EI
, (1)

where a is the actuator offset from the neutral axis, Ac is the cross-sectional area of the SMA actuator, L is
its length, E is the elastic (Young’s) modulus of the flexible beam, and I is its area moment of inertia. The
stress-strain relationship for the bending system can be simplified to

σ(t) =
EI

a2Ac
(εP − ε(t)) , (2)

where εP is the pre-strain in the SMA actuator. Equation (2) reduces the planar bending problem to a one-
dimensional problem consisting of a SMA actuator in parallel with a linear spring with stiffness

K =
EI

a2Ac
. (3)

The SMA strain ε(t) is modeled using the homogenized energy model. The HEM accounts for material
inhomogeneities and interaction effects to accurately and efficiently quantify the macroscopic SMA behavior.
A complete derivation of the model and data-driven techniques for estimating model parameters are provided
in.17 In Crews et al.,17 a single SMA actuator in constant-temperature conditions was considered. The relevant
relationships and equations are summarized here in order to tailor the HEM to the bending system under
consideration.

The HEM quantifies the macroscopic strain

ε(t) =

∫ ∞
0

∫ ∞
−∞

νR(σR)ν(σI)ε (σ(t) + σI , T (t);σR) dσIdσR (4)

(a) (b)

Figure 1: (a) Flexible beam actuated by single SMA tendon; (b) Time-lapse photograph of robotic system.



by assuming the relative stress σR and interaction stress σI are manifestations of underlying densities νR(σR)
and νI(σI). In Equation (4), T (t) is the temperature in the SMA wire. Different forms can be assumed for the
densities, subject to certain conditions.11 Here, we assume the densities

νR(σR) =
1

C1

Mα∑
m=1

Kα∑
k=1

αk,mφk,m (σR) C1 =

Mα∑
m=1

Kα∑
k=1

αk,m (5)

and

νI(σI) =
1

C2

Kβ∑
k=1

βkψk (σI) C2 =

Kβ∑
k=1

βk (6)

are linear combinations of log-normal and normal functions. The kernels φk,m(σR) and ψk(σI) are given by

φk,m (σR) =
1

ckσR
√

2π
exp

(
−[ln (σR)− µRm ]2/2c2k

)
and

ψk (σI) =
1

bk
√

2π
exp

(
−σ2

I/2b
2
k

)
.

The density coefficients αk,m and βk and parameters ck, µRm , and bk can be estimated using experimental data.17

The mesoscopic (or local) strain ε(σ(t) + σI , T (t);σR) in Equation (4) is given by

ε(σ(t) + σI , T (t);σR) = xA(t)
σ(t)

EA
+ xM+(t)

(
σ(t)

EM
+ εT

)
+ xM−(t)

(
σ(t)

EM
− εT

)
,

where xA(t), xM+(t), and xM−(t) are the austenite (A), martensite plus (M+), and martensite minus (M−)
phase fractions, respectively, EA is the austenitic elastic modulus, EM is the martensitic elastic modulus, and
εT is the maximum recoverable strain.

The evolution of the phase fractions is governed by the coupled differential equations

ẋM+(t) = −p+AxM+(t) + pA+xA(t)

ẋM−(t) = −p−AxM−(t) + pA−xA(t)
(7)

and the conservation relation
xA(t) = 1− xM+(t)− xM−(t). (8)

Substituting (8) into (7) yields

ẋM+(t) = − (p+A + pA+)xM+(t)− pA+xM−(t) + pA+

ẋM−(t) = − (p−A + pA−)xM−(t)− pA−xM+(t) + pA−.
(9)

The transition rates pαβ (α, β = A,M+,M−) depend on the SMA stress, temperature, and material parameters
and are described in greater detail in Crews et al.17 The temperature in the SMA actuator is quantified using a
first-order, lumped capacitance model,

Ṫ (t) = −h (T (t)− T∞) + γv2(t), (10)

where h is the convective heat transfer coefficient between the actuator and ambient air at temperature T∞, v(t)
is the applied voltage, and γ is a parameter that accounts for the SMA resistance and specific heat.

The integral (4) is discretized using 4-point Gaussian quadrature on 20 equal intervals, yielding

ε(t) =

Ni∑
i=1

Nj∑
j=1

νR (σRi) νI
(
σIj
)
ε
(
σ(t) + σIj , T (t);σRi

)
viwj , (11)



where σRi and σIj are the quadrature points and vi and wj are the quadrature weights. The summations in (11)
can be converted to the vector-matrix-vector product

ε(t) = V TΓW,

where
V T = [v1νR(σR1

), · · · , vNiνR(σRNi )]

WT = [w1νI(σI1), · · · , wNjνI(σINj )]

Γ = XA
σ(t)
EA

+XM+

(
σ(t)
EM

+ εT

)
+XM−

(
σ(t)
EM
− εT

)
.

The Ni ×Nj matrices XA, XM+, and XM− evaluate the phase fractions at

[Xα(t, σ(t), T (t))]ij = xα
(
t, σ(t) + σIj , T (t);σRi

)
α = A,M+,M−,

where xα are the solutions to (7) and (8).

The ODEs (9) are discretized and solved using an implicit Euler scheme. For discretized time tk = k∆t,
stress σk = σ(tk), and temperature T k = T (tk) values, the implicit Euler discretization yields

ak+1
11 xk+1

M+ + ak+1
12 xk+1

M− = xkM+ + ak+1
13

ak+1
21 xk+1

M+ + ak+1
22 xk+1

M− = xkM− + ak+1
23 ,

(12)

where
ak+1
11 = 1 + ∆t (p+A + pA+) ak+1

21 = pA−∆t

ak+1
12 = pA+∆t ak+1

22 = 1 + ∆t (p−A + pA−)

ak+1
13 = pA+∆t ak+1

23 = pA−∆t.

(13)

Note that in (13), the transition rates depend on σk, T k, σI , and σR. The austentic phase fraction xk+1
A is given

by the conservation relation (8). The implicit Euler discretization of the temperature yields

T k+1 = dk+1
1 T k + dk+1

2 ,

where

dk+1
1 =

1

1 + h∆t
dk+1
2 =

∆t
(
hT∞ + γ

(
vk+1

)2)
1 + h∆t

.

The stress σk is found by substituting (11) into (2) and solving for the equilibrium stress, which yields

σk =
εP − εT

(
V TXM+W − V TXM−W

)
a2Ac
EI + V TXAW

1
EA

+ V TXM+W
1
EM

+ V TXM−W
1
EM

.

Equation (12) can be solved using Cramer’s rule, which gives

xk+1
M+ = ck+1

11 xkM+ + ck+1
12 xkM− + ck+1

13

xk+1
M− = ck+1

21 xkM+ + ck+1
22 xkM− + ck+1

23 ,

where

ck+1
11 =

ak+1
22

det ck+1
12 = −a

k+1
12

det ck+1
13 = 1

det

(
ak+1
22 ak+1

13 − a
k+1
12 ak+1

23

)
ck+1
21 = −a

k+1
21

det ck+1
22 =

ak+1
11

det ck+1
23 = 1

det

(
ak+1
11 ak+1

23 − a
k+1
13 ak+1

21

)
det = ak+1

11 ak+1
22 − a

k+1
12 ak+1

21 .

(14)



The computational efficiency of the model can be improved by storing 4-D arrays Pαβ of the transition rates
evaluated at the quadrature points σRi and σIj and uniformly distributed values of the stress σ` and temperature
T m, where σmin ≤ σ` ≤ σmax and Tmin ≤ T m ≤ Tmax. For example,

[P`m+A]ij = p+A
(
σ` + σIj , T m;σRi

)
.

During implementation, the indices ` and m corresponding to values nearest to σk and T k are found and the
Ni×Nj matrices P`mαβ are used to calculate the matrices corresponding to (14), Ck+1

11 , · · · , Ck+1
23 . These matrices

can be rapidly calculated using point-wise operations. The matrices of the phase fractions can then be updated
in one step using the relations

Xk+1
M+ = Ck+1

11 .×Xk
M+ + Ck+1

13 .×Xk
M− + Ck+1

13

Xk+1
M− = Ck+1

21 .×Xk
M+ + Ck+1

23 .×Xk
M− + Ck+1

23

Xk+1
A = 1−Xk+1

M+ −X
k+1
M−

, (15)

where point-wise multiplication (.×) and summation are again used. In Equation (15), 1 is the Ni×Nj identity
matrix.

3. PARAMETER UNCERTAINTY QUANTIFICATION

Numerous techniques exist to estimate uncertainty in model parameters. Frequentist approaches involve multiple
measurements or samples of experimental data. However, collecting large sets of data can be expensive and time
consuming. One method that overcomes these limitations is bootstrapping.24–26 Here, we are testing the Bayesian
framework by using Markov Chain Monte Carlo (MCMC) algorithms. First, we determine the optimal model
parameters using standard least-squares approaches. Then, we use the optimization results to determine the
covariance matrix for the MCMC’s proposal function.

3.1 Ordinary Least Squares Fit of Model Parameters

The optimization algorithm minimizes

F (~p) =
1

2

N∑
i=1

(ŷ(ti)− y(ti; ~p))
2
, (16)

the sum of squared error between the experimentally measured bending angle ŷ(ti) and the model predicted
bending angle y(ti; ~p) = θ(ti; ~p) given by Equation (1). A complete list of the model parameters ~p is provided in
Table 1. Here, we are including all the SMA model parameters in the optimization routine. Alternatively, one
could optimize the SMA model parameters (such as αk,m through V in Table 1) using tensile-test data17 and
then only fit the heat transfer and bending model parameters using the measured bending angle. Including all
the parameters will produce a lower sum of squared error but neglects the coupling between parameters.

3.2 Markov Chain Monte Carlo Methods

MCMC algorithms are based on Bayes’ rule, which relates the posterior density π(~q | ŷ ) to a prior density πpr(~q )
by the relation

π(~q | ŷ ) =
p(ŷ |~q )πpr(~q )∫

Rd
p(ŷ |~q )πpr(~q )d~q

, (17)

where p(ŷ |~q ) is the likelihood of observing ŷ given parameters ~q. For relatively few parameters, the posterior
density can be calculated directly by integrating the denominator in Equation (17). However, in higher-dimension
parameter spaces, this approach is infeasible.

MCMC methods avoid the difficult integral in Equation (17) by creating a Markov Chain whose stationary
distribution is the posterior density π(~q | ŷ ). Various MCMC algorithms exist, including the popular Metropolis-
Hastings algorithm7–9,27 and adaptive algorithms.28



Table 1: Model parameters and estimation techniques.

Variable Description Units

αk,m Relative stress density coefficients -

βk Interaction stress density coefficients -

EA Elastic modulus of austenite GPa

EM Elastic modulus of martensite GPa

σL Martensite transition stress at temper-
ature TL

MPa

TL Lower transition temperature K

∆σT Hysteresis loop’s temperature depen-
dence

MPa/K

εT Maximum recoverable strain %

τ Relaxation time s

V Layer volume m3

h Convection coefficient -

γ Heat transfer parameter -

εP SMA actuator pre-strain %n

a SMA actuator offset from the neutral
axis

mm

L Flexible beam length mm

EI Beam elastic modulus and area moment
of inertia

N-cm2

Here, we are using the Random Walk Metropolis algorithm presented in Solonen.9 The algorithm calculates
new parameters ~q new from a proposal distribution f(· | ~q old). The proposal distribution is taken to be Gaussian;
therefore, we need an estimate for the covariance matrix C. An initial set of parameters ~q ∗ is determined first
using standard least-squares approaches. Using the assumption that the residuals are i.i.d., the covariance matrix
is approximately

C = σ2(JTJ)−1, (18)

where J is the Jacobian of the model error

e(ti) = ŷ(ti)− ~y(ti; ~q
∗).

The variance in the model error is estimated by

σ2 =
SS(~q ∗)

N − length(~q )
,

where the sum of squared errors is

SS(~q ) =
N∑
i=1

(ŷ(ti)− ~y(ti; ~q )
2

for N experimental data points. After initializing the algorithm with the starting point ~q ∗ and covariance matrix
C, a new set of parameters is proposed using the random walk relation

~q new = ~q old +R~z,

where R is the Cholesky decomposition of C and ~z is a random vector sampled from the standard normal
distribution.



The new set of parameters is accepted with probability

α = min

(
1,
π(~q new | ŷ)f(~q old | ~q new)

π(~q old | ŷ)f(~q new | ~q old)

)
. (19)

Since the Gaussian yields a symmetric proposal f(~q old | ~q new) = f(~q new | ~q old), the ratio in Equation (19)
reduces to

π(~q new | ŷ)

π(~q old | ŷ)
=
p(ŷ | ~q new)πpr(~q

new)

p(ŷ | ~q old)πpr(~q old)
. (20)

Note that in Equation (20), the constant
∫
Rd
p(ŷ | ~q )πpr(~q )d~q cancels and we know the posterior density up to

this normalization constant. Finally, the assumption of a uniform (or uninformative) prior

πpr(~q
old) = πpr(~q

new) = 1,

yields the acceptance ratio

α = min

(
1,
p(ŷ | ~q new )

p(ŷ | ~q old )

)
. (21)

Here, the likelihood is given by
p(ŷ | ~q ) = exp

(
−0.5σ2SS(~q)2

)
with the assumption of Gaussian model errors. For the MCMC, we are using a subset of the parameters listed in
Table 1 and therefore have denoted the MCMC parameters with ~q (versus the optimization parameters ~p ). Since
the goal is to use the uncertainty quantification results in robust control algorithms, the heat transfer parameters
h and γ are included, as the heat transfer dynamics has a strong effect on the response of the SMA-actuated
beam. Additionally, the parameters related to the bending model are included: a, εP , and EI. However, all
the parameters Table 1 can be included in the MCMC without affecting the convergence of the Monte Carlo
algorithm, since the convergence depends on the number of iterations and not the number of parameters. The
Random Walk Metropolis algorithm for the SMA-actuated beam is summarized in Algorithm 1. During the
optimization and MCMC steps, all the parameters are scaled so that the magnitudes are on the order of unity.

4. RESULTS

4.1 Ordinary Least Squares Fit of Model Parameters

A prototype of a SMA-actuated flexible beam was constructed to gather experimental data. The system consists
of a 0.127 mm diameter FLEXINOL SMA actuator (Dynalloy, Inc. Tustin, CA) and a 0.5 mm diameter super-
elastic Nitinol beam. The bending angle is measured using a trakSTAR 3D magnetic tracking system (Ascension
Technology Corporation, Burlington, VT). Complete details of the experiment are provided in Hannen et al.29

An input voltage consisting of a sinusoidal function, ramp input, and step input of different magnitudes is
used to collect the experimental data shown in Figure 2(a). This input captures the major loop and various
minor loops for the SMA actuator. A comparison between the model output using initial parameter estimates
and the experimentally measured bending angle is shown in Figure 2(b). A comparison between the fit model
and measured bending angle is shown in Figure 2(c). A complete list of the initial parameter estimates, bounds,
and least-squares optimal parameters is summarized in Table 2. The bounds are chosen to keep the parameters
within a reasonable range of the parameters found in Crews et al.17 or within reasonable ranges based on
fabrication tolerances.

4.2 Markov Chain Monte Carlo

The MCMC algorithm is parallelized using 8 separate threads. Each thread is initialized with the same starting
value (the optimal parameters in Table 2) and run for 50, 000 iterations to ensure burn-in. The parameter values
for each iteration are shown in Figure 3. The resulting histograms are shown in Figure 4.

The results indicate that the optimal parameters were not obtained during the ordinary least-squares mini-
mization. The MCMC eventually approaches the upper bound on γ (5.0) and a convection coefficient h around



Find ~p ∗ = min
∑N
i=1 (ŷ(ti)− y(ti; ~p))

2
;

σ2 =
∑N
i=1 (ŷ(ti)− y(ti; ~p

∗))
2
/ (N − length(~p));

SSold =
∑N
i=1 (ŷ(ti)− y(ti; ~p

∗))
2
;

~q old = [a∗, ε∗P , h
∗, γ∗, EI∗]T ;

Calculate Jacobian Jq using a finite difference method;

C = σ2(JTq Jq)
−1 ;

Calculate R so that C = RTR (using Cholesky decomposition) ;
for i = 1 to Ni do

Sample ~z = zk, k = 1, · · · , length(~q) from N(0, 1) ; // N(0, 1) is the standard normal density

~q new = ~q old +R~z ;
Sample uα from U [0, 1] ; // U(0, 1) is the uniform density on [0 1]

SSnew =
∑N
i=1 (ŷ(ti)− y(ti; q

new, ~p ∗))
2

;

α = min
{

1, exp
(
− 0.5σ−2(SSnew − SSold)

)}
;

if uα < α then
~q i = ~q new ;

~q old = ~q new;

SSold = SSnew;

else
~q i = ~q old ;

end

end

Algorithm 1: Random Walk Metropolis algorithm for the SMA bending actuator.

(a) (b) (c)

Figure 2: (a) Input voltage and bending angle comparison between model and experimental data for (b) initial
parameter estimates and (c) optimal parameters.

1.65. The root mean squared error (RMSE) corresponding to these values (γ = 5.0 and h = 1.65) is 3.93o,
compared to a RMSE of 3.98o for the OLS parameters listed in Table 2. The histograms of the heat transfer
parameters h and γ are bimodal because the MCMC eventually finds a new set of parameters with similar error
as the least-squares optimal parameters. Further investigations are necessary to determine whether relaxing the
bounds is appropriate. For control algorithms, we are mainly concerned with bounds on the parameters. The
95% credible intervals for all the parameters are listed in Table 3.

5. CONCLUSION

In this paper, we employed a model for a flexible beam actuated by a single SMA tendon. Additionally, we
investigated a systematic approach to quantifying parametric uncertainty using a Markov Chain Monte Carlo
algorithm. The results indicate that the posterior densities (a measure of model uncertainty) appear to converge,
but additional simulations may be necessary in order to guarantee convergence. Additionally, even though each



Table 2: Initial optimization values and results.

Variable
Lower Upper Initial Optimal

Units
bound bound estimate value

EA 20.0 90.0 30.7 20.0 GPa

EM 20.0 50.0 26.0 50.0 GPa

σL 200 350 295 350 MPa

∆σT 7.0 12.0 9.2 7.04 MPa/K

εT 3.5 6.0 4.36 5.11 %

τ 0.001 2.0 1.81 1.2275 s

V 1×10−28 1×10−23 1.0×10−25 7.5×10−24 m3

h 0.1 3.0 0.581 1.418 -

γ 0.5 5.0 2.50 4.62 -

εP 1.0 5.0 4.0 3.43 %

a 0.1 3.0 1.0 2.0 mm

L 60 120 88 106 mm

EI 0.1 5.0 1.30 0.99 N-cm2

(a) (b) (c)

(d) (e)

Figure 3: MCMC threads (different colors) for (a) a, (b) εP , (c) h, (d) γ, and (e) EI.

Table 3: Comparison between 95% credible intervals.

Parameter [units] a [mm] εP [%] h γ EI [N-cm2]

Lower Bound 1.9746 3.4006 1.4310 4.3674 0.9123

Upper Bound 2.0392 3.4871 1.6713 4.9955 0.9976



(a) (b) (c)

(d) (e)

Figure 4: MCMC histograms for (a) a, (b) εP , (c) h, (d) γ, and (e) EI.

parallel thread follows a different path, they are all initialized at the same point. It may advantageous to using
different initial values.

Future work will compare different proposal functions and their effect on the convergence of the posterior
density. Additionally, MCMC results will be compared to other uncertainty quantification approaches such as
bootstrapping. Ultimately, the results will be used in robust control algorithms.
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